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Abstract

Angular momentum coupling in quantum physics obeys obvious symmetries
of rotation and reflection so that the Clebsch–Gordan (vector coupling)
coefficients or Wigner 3j -symbols describing the coupling vanish unless these
symmetries are satisfied. However, it has long been observed that there
are ‘accidental’ or ‘nontrivial’ zeroes of some coefficients even when the
obvious symmetries are satisfied. Partial explanations and conjectures on
the systematics of some of these zeroes have been advanced. We provide some
more and propose as well ‘near zeroes’ which, while not exactly vanishing, are
extremely small in magnitude. Connections are made to zeroes of Legendre
and hypergeometric polynomials and to classical and semi-classical pictures for
the addition of angular momenta. A convenient ordering scheme for 3j ’s that
incorporates Regge symmetries also emerges. Further aspects of our analysis
concern radial matrix elements of powers of r in a Coulomb potential that have
analogous expressions to 3j ’s as a result of a non-compact O(2, 1) counterpart
of the O(3) group symmetry of rotations. Some remarks are made on possible
realization in actual physical systems.

PACS numbers: 03.65.Fd, 03.65.Sq, 31.15.xh

1. Introduction

The addition of two angular momenta j1 and j2 in quantum physics to yield a third j3 is
familiar throughout physics. These are restricted to integer or half-odd integer values and the
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1751-8113/09/175203+11$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/17/175203
mailto:thomas.heim@unibas.ch
mailto:arau@phys.lsu.edu
http://stacks.iop.org/JPhysA/42/175203


J. Phys. A: Math. Theor. 42 (2009) 175203 T A Heim et al

three quantities must form a ‘triad’, that is, their magnitudes must be representable as three
sides of a triangle. Only such triplets can occur as legitimate Clebsch–Gordan or Wigner
coefficients for quantum angular addition or in the equivalent, somewhat more symmetric,
form called 3j -symbols [1–5],(

j1 j2 j3

m1 m2 m3

)
. (1)

Here, m are the projection quantum numbers of the corresponding angular momentum on the
quantization z-axis (with reversed sign in one case), with |m| � j , and satisfy the requirement
m1 + m2 + m3 = 0.

Extensive tables5 [4, 6, 7] and computer programs are available for these 3j -symbols
which record only those triplets which satisfy the above basic requirements. A glance through
such a table will show zeroes in the values of certain 3j ’s, an example being(

3 3 2
2 −2 0

)
. (2)

There is no obvious reason why this should vanish, in that it represents the addition of two
angular momenta of magnitude 3 with equal and opposite m which can lead to an angular
momentum 2 with zero z-projection. Hence, they are referred to as ‘accidental zeroes’ [4, 8].
We will return to this particular coefficient later but note that it arises in quadrupolar coupling
and thus has concrete realizations, especially in nuclear E2 transitions (p 415 of [8]). Similar
results on nontrivial zeroes obtain for other angular momentum coefficients such as 6j but we
confine our discussion to the 3j .

In the 1980s, several authors [9–14] observed whole classes of nontrivial zeroes of 3j ’s,

an example being
( j1 j2 j1 + j2 − 1
m1 m2 −(m1 + m2)

)
, when m1/j1 = m2/j2 [9]. In a usual geometrical picture

of angular momentum j as a vector lying on a cone about the z-axis, with m its projection
onto that axis, this would indicate that the conical angle or ‘tilt’ must be preserved6. Further,
the familiar Regge symbol and symmetries [6, 15] expressed by the recasting of a 3j -symbol
in (1) as ⎛

⎝−j1 + j2 + j3 j1 − j2 + j3 j1 + j2 − j3

j1 − m1 j2 − m2 j3 − m3

j1 + m1 j2 + m2 j3 + m3

⎞
⎠ , (3)

places a unity at the top right corner of this matrix for such a 3j . Calling the lowest entry in the
Regge matrix (3) the ‘weight’ [10] (‘degree’ in some places [13, 14], ‘order’ in others) which
we denote by c, this particular vanishing 3j -symbol was seen as describing all non-trivial
zeroes of weight 1. The proof involved solving a Diophantine equation, but alternative proofs
relating the 3j -symbol to a hypergeometric function 3F2 with five indices and argument z = 1
have also been given, and we will also provide simpler proofs below. Some zeroes were also
investigated for higher weights [11–14, 16] and we will present results for general c.

Another set of conjectured zeroes consists of7(
j1 j2 j3

1 −1 0

)
, (4)

5 Equation (1.11) of [6] should have all signs of m on the right-hand side reversed and in equation (1.12), the second
and third columns should be interchanged. Furthermore, the last factor in the square root in equation (1.52) should
read (L − 2l3).
6 This concept was advanced by U Fano as a geometrical element, that ‘shape’ is conserved but, in discussions with
one of the authors (ARPR), the word ‘tilt’ was chosen as a better term.
7 The original conjecture by S Brudno was modified by one of the authors (ARPR) to incorporate some necessary
constraints.
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when j3(j3 + 1) = j1(j1 + 1) + j2(j2 + 1) and j1 + j2 + j3 is even. Examples include(3 5 6
1 −1 0

)
,
(6 9 11

1 −1 0

)
and

(14 14 20
1 −1 0

)
, which have respective weights 2, 4 and 8. This observation

is an interesting complement to a known result (corrected equation (1.52) in [6]; see footnote 5

on p 2) that establishes a proportionality between
(j1 j2 j3

1 −1 0

)
and

(j1 j2 j3 + 1
0 0 0

)
applicable for odd

j1 + j2 + j3, such 3j ’s having no accidental zeroes.
In this paper, we collect together these various observations on nontrivial zeroes,

systematize them and analyze in terms of different weights, and connect to the hypergeometric
function and other special functions to bring out the structures in a simple fashion and, at the
same time, extend to other classes of such zeroes. We will also connect to the ‘classical limit’
of high values of angular momenta [2, 17–22] when the 3j ’s are known to reduce to rotation
functions (appendix 2 of [1, 23–26]) and Legendre polynomials (equation (1.59) of [6], p 77
of [27], problem 5.5 of [5, 28, 29]), which sheds further light on the vanishing of certain 3j ’s
and points to ‘near zeroes’ which, while not exactly vanishing are almost so, taking sometimes

astonishingly low numerical values. An example is
(15 15 3

12 −12 0

)
, with absolute value 0.000 29.

Another is the whole family(
d2 2d2 − d d2

(d − 1)(d + 2)/2 −(d − 1)(d + 2)/2 0

)
, (5)

which is exactly zero for d = 1, 2, 3, takes the absolute value 0.002 03 for d = 4, reaches a
small peak absolute value of 0.011 at d = 9, declining continuously after that to zero, falling
below 0.0001 at d = 19.

2. Standardized classification by ‘weight’ and accidental zeroes

A 3j -symbol has five independent parameters because of the constraint that the bottom entries
sum to zero. Its Regge form in (3) has similarly five parameters which, with the weight c in
the upper right corner, can be arranged as⎛

⎝ c

p q

r s

⎞
⎠ , (6)

with p = j1 − m1, q = j2 − m2, r = j1 + m1, s = j2 + m2. The remaining entries can be
filled in easily as (q + s − c), (p + r − c) in the first row and (r + s − c), (p + q − c) in the
last column. As in (3), each row and column in the Regge matrix sum to the same value,
p + q + r + s − c = j1 + j2 + j3.

We note first that a Regge matrix with two rows or columns identical, and with the sum

of all entries odd, is a trivial zero because it can always be recast as the symbol
(j1 j2 j3

0 0 0

)
,

with j1 + j2 + j3 odd which vanishes [6]. This is called a symmetry under parity (see
equation (10.15) of [3]) in the permutation of j1 and j2 and under ‘frame reversal’, that is,
reversal of the sign of all m indices (section 5.1.4 of [5]). Nearly all the zeroes that occur in
these tables [6] are such trivial zeroes with only six distinct exceptions.

With j3 = j1 + j2 − c in (1), and casting in the above standard form of weight c, apart
from non-vanishing factors, the 3j in (1) involves the factor (see equation (5.9) or (5.15)
of [5])

c∑
n=0

(−1)n
(

c

n

)(
2j1 − c ≡ b

j1 − m1 − n

)(
2j2 − c ≡ a

j2 + m2 − n

)
, (7)
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each of the three factors a binomial coefficient. Any zero can only result from a vanishing
of this expression. Defining8 the ‘tilt’ as x ≡ m/j , we can now systematize (7) for various
values of c.

Thus, for c = 1, (7) reduces to two terms,(
1 + x1

1 − x1

1 − x2

1 + x2
− 1

)
. (8)

Clearly, this vanishes only for x1 = x2, that is, equal tilt as observed in [14] but proved
previously [9] by more complicated methods.

For c = 2, (7) has three terms,

(1 + x1)(1 − x2)

(1 − x1)(1 + x2)

(1 + x1 − 1/j1)(1 − x2 − 1/j2)

(1 − x1 − 1/j1)(1 + x2 − 1/j2)
− 2

(1 + x1)(1 − x2)

(1 − x1 − 1/j1)(1 + x2 − 1/j2)
+ 1.

(9)

Note first, that in the classical limit of large j1 and j2, (9) reduces to the square of (8) and thus
vanishes for the same condition as before, that the tilts x are equal. Indeed, this holds true
in general for large angular momenta because the expression in (7) reduces to

∑c
n=0(−1)n

(
c

n

)
and thereby vanishes for all c �= 0. This proves that the only non-zero 3j is for c = 0, that is
j3 = j1 + j2, or for the same tilt.

The non-triviality of the above result is worth noting, that it applies to all c, that is, all
values of j3 for a given (j1, j2), both large. A more straightforward conclusion due to the
parity symmetry noted already applies for j1 = j2 (whether large or not), with x1 = x2, that
all 3j for odd c vanish. In this case, the first two columns of the Regge matrix are identical
and, as noted, can be mapped into a 3j with all m values zero which vanishes when j1 + j2 + j3

is odd. But the preservation of tilt, that only the 3j with c = 0 is non-zero, so that the tilt x3

equals x1 = x2 is a stronger conclusion.
Other cases of zeroes or near-zeroes for c = 2 can be read off easily from (9). For x1 = x2,

there is no exact zero in general although for large j1 and j2, the expression nearly vanishes.
For x1 = 0, that is, when one tilt is zero, a zero occurs when

x2 =
√

(j1 + j2 − 1)/(j2(2j1 − 1)), (10)

an example being
(4 4 6

0 2 −2

)
.

For x1 = −x2, that is, opposite tilts, a zero occurs when

x2 =
√

(j1 + j2 − 1)/(8j1j2 − 3j1 − 3j2 + 1), (11)

while for x1j1 = −x2j2, that is, ‘opposite projections’ m1 = −m2, a zero occurs for

m1 = −m2 =
√

j1j2/(2(j1 + j2) − 1), (12)

an example being
(5 3 6

1 −1 0

)
, a zero already encountered as an example of (4).

Similar results pertain to c = 3. Again, for x1 = x2, there are only trivial zeroes for
x1 = x2 = 0 or j1 = j2 but, for large angular momenta, near zeroes occur associated with the
result in the classical limit. For x1 = 0, a zero occurs for

x2 =
√(

3j1j2 + 3j 2
2 − j1 − 6j2 + 2

)/(
j 2

2 (2j1 − 1)
)
, (13)

8 Alternatives to the ratio that have been used elsewhere in the literature are m/
√

j (j + 1) and the semi-classical
replacement m/(j + 1/2). All have merit in appropriate contexts, as we also use in this paper, but in results such as
(10)–(14), the use of the entries m and j themselves that occur in the 3j prove appropriate.
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examples being
(3 6 6

0 5 −5

)
and

(9 9 15
0 5 −5

)
although the former is actually a weight-one zero. For

‘opposite projections’ m1 = −m2, a zero occurs for

m1 = −m2 =
√

(3j1j2 − j1 − j2)/(2j1 + 2j2 − 3), (14)

an example provided by
(23/2 13/2 15

5/2 −5/2 0

)
.

Sometimes, a zero of lower weight is more easily viewed in terms of the next higher

entry in (6). Thus,
(7/2 15/2 9

1/2 −5/2 2

)
is a weight c = 2 zero, but it does not belong to any of the

categories in (9)–(12). However, in its Regge form in (6), it has two equal entries that can
be brought to the positions p and r through Regge symmetries and thus a 3j with vanishing

entry m1,
(5 13/2 17/2

0 −9/2 9/2

)
, and in this case of ‘pseudo-weight’ three, which vanishes as per (13)

for such an (c = 3, x1 = 0) object.

3. Connection to hypergeometric polynomials

Consider next the connection to the hypergeometric polynomials 3F2 with argument unity
[30, 31]. This well-known relationship (p 428 of [8, 13, 32, 33]) has already been used to
analyze for nontrivial zeroes [13]. Since 3F2 is an analytic function of its argument, this
connection has important implications. The expression in (7) can be recast, again to within
non-zero multiplicative factors, as

3F2(−c,−r,−q;p + 1 − c, s + 1 − c; 1), (15)

the search for zeroes becoming one of searching for when this function vanishes. Indeed, all
non-trivial zeroes for c � 1 occur through zeroes of 3F2. Note that this symbol also depends,
of course, on five parameters. Since permutation among the first three ‘numerator’ and next
two ‘denominator’ entries (12 in all) trivially leave the value unchanged, of the 72 symmetries
of the hypergeometric polynomial, we are left with six different ones in agreement with the
similar six when viewed in terms of Regge symmetries [6, 15].

For any c, the expression for this 3F2 in terms of the Pochhammer symbols, (a)n ≡
a(a + 1) · · · (a + n − 1), has (c + 1) terms,

c∑
n=0

(−c)n(−r)n(−q)n

n!(p + 1 − c)n(s + 1 − c)n
=

(
1 − (−r)(−q)

(p + 1 − c)(s + 1 − c)

)c

, (16)

where the right-hand side is a binomial-like expansion but with Pochhammer symbols in place
of powers, an → (a)n. These finite expansions can now be analyzed for their zeroes. As

examples, it is easily verified that
(4 4 6

0 2 −2

)
and

(9 9 15
0 5 −5

)
are zeroes. It is based on this that we

first conjectured and then established the generalization in (5) that applies to general weight d.
For c = 1, the zero occurs for rq = ps which gives the previous result that the only

zeroes of weight 1 are for x1 = x2. Also, as observed earlier, in the classical limit of large j1

and j2, when p ≈ r ≈ j1 and q ≈ s ≈ j2, with m and c dropped as negligible in comparison,
we have the expression in (16) vanish for all c �= 0.

This occurrence of rq = ps suggests a convenient systematics for viewing 3j zeroes that
incorporates Regge symmetries so that all equivalent ones related through these symmetries
are grouped together. Tables such as in [6] order 3j ’s with the first entry the largest j but
this does not incorporate Regge symmetries. To do so, tables can be drawn up with the five
parameters arranged as follows: (i) c, the weight and the least value in the Regge matrix;
(ii) the determinant of its minor in (6) which is indeed (ps − qr); (iii) the minimum among
those four elements of the minor, (iv) followed in order by the other two members that share

5
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a row or column with it. Thus, the weight c = 4 zero,
(11 15/2 15/2

3 −5/2 −1/2

)
, whose Regge form is(11 11 4

10 8 8
5 7 14

)
, would be classified as (4, 30, 5, 7, 10). Note that the occurrence of equal entries

in the Regge matrix allows this to be written as a 3j with one zero m-value,
(15/2 8 21/2
−7/2 0 7/2

)
,

which would be a pseudo-weight five zero with x2 = 0. Similarly, the c = 4 zeroes,
(9 8 8

5 −4 −1

)
and

(21/2 8 13/2
7/2 −1 −5/2

)
, are both described in this systematization as (4, 27, 4, 7, 9). An alternative

scheme has been used in the rapid and efficient computation of 3j -symbols which also uses
the smallest element c in the Regge matrix as the lead element [34, 35]. It does not, however,
use the determinant of its minor as suggested here if the focus is on zeroes. There is no
obviously best schematization scheme but those that incorporate Regge symmetries lead, of
course, to more economical groupings. Ansari [36–38] has extensive discussions of Regge
and alternative forms and ‘quasi-binomial’ representations such as (16).

4. Connection to Legendre polynomials

Using (15) and (16), we can write

(
j J J

0 M −M

)
=

√
(2J − j)!

(2J + j + 1)!

j∑
n=0

(
j

n

)2

(−J + M)n(J + M + 1 + n − j)j−n

=
√

(2J − j)!

(2J + j + 1)!

j∑
n=0

(−1)j−n

(
j

n

)2

(−J + M)n(−J − M)j−n. (17)

It is instructive to examine this for specific j . For j = 1, the casting as the Legendre
polynomial P1 is the well-known expression as in equation (1.59) of [6]. For j = 2, the sum
is proportional to (3M2 − J (J + 1)), or the Legendre polynomial of degree 2 as in the known
result

2
√

2J + 1

(
2 J J

0 M −M

)
=

√
J (J + 1)

(J − 1/2)(J + 3/2)

(
3M2

J (J + 1)
− 1

)
. (18)

In particular, it vanishes at the zero of the P2(cos θ) last term, where cos θ = M/
√

J (J + 1), an

example being
(2 3 3

0 2 −2

)
. This is a zero of weight 1 as discussed earlier and may have physical

realization in the vanishing of a quadrupole coupling between nuclear states of J = 3. The
next example with 3M2 = J (J + 1) for integer values occurs for J = 48,M = 28, its 3j a
zero of weight 2.

For j = 3, (17) is proportional to [M/
√

J (J + 1)][3 − (5M2 + 1)/(J (J + 1))] together
with non-vanishing factors involving J , again in agreement with a known result [28, 29]

for
(3 J J

0 M −M

)
. Except for the small ‘correction’ 1 to 5M2, this resembles P3(cos θ) which

vanishes for cos2 θ = 3/5. Indeed, with J = 15, this gives M = 11.992 so that
(3 15 15

0 12 −12

)
is a ‘near zero’, having the value −0.000 29. Likewise, (17) for j = 4 closely approximates
the polynomial P4(cos θ) with a near zero for M2 = 4J (J + 1)/35, an example being(4 9 9

0 3 −3

) ≈ 0.0093.
The above relationship to Legendre polynomials is general, as can be seen from the close

resemblance of the general expression in (17) to a known, if less familiar, expression for these
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polynomials [39],

Pj (x) = 1

2j j !

dj

dxj
(x2 − 1)j = 2−j

j∑
n=0

(
j

n

)2

(x − 1)n(x + 1)j−n, (19)

with Pochhammer symbols replaced by powers. Note also that a 3j -symbol is a 3F2 series
with five parameters (its argument being fixed at unity) whereas a Legendre polynomial is a
2F1 function which has four parameters (among them its argument, not fixed at unity). The
reduction of the number of parameters by one is reflected in M and J occurring only in a single
combination of their ratio, the tilt (see footnotes 6 and 8) as the argument of the Legendre
polynomial.

Yet another approach to connect 3j coefficients to Legendre polynomials is through three-
term recurrence relations obeyed by these (and also 6j ) coefficients. Indeed, the most efficient
way of computing the coefficients, especially for large values of j , is through such recurrence
algorithms. Thus, the coefficient in (17) obeys a three-term recurrence relation given in [40]
for the function g(M) with m1 = 0 and j2 = j3 = J , the entries of the three terms listed in
the middle column of the paper’s table 1. Using an additional phase factor in the definition so

that g(M) = (−1)M
(j J J

0 M −M

)
, this difference equation is

(J − M)(J + M + 1)g(M + 1) − [2J (J + 1) − j (j + 1) − 2M2]g(M)

+ (J − M + 1)(J + M)g(M − 1) = 0. (20)

Through a procedure for casting difference equations as differential equations [41, 42], by
writing g(M ± 1) = g(x) ± g′ + g′′/2, where primes denote differentiation with respect to
x = cos θ = M/

√
J (J + 1), a continuous variable between −1 and +1 for large J, g(x)

is seen to obey the Legendre differential equation for Pj (cos θ), thus again establishing the
equivalence for large J . Interestingly, if instead of this viewing of the above 3j as a function
of M at fixed j and J which gives Pj , an analogous conversion of the recurrence relation in
the first column of table 1 of [40] to a differential equation but now for fixed J and M and
varying j expresses the 3j as a Bessel function J0(u), with u ≡ (j + 1/2)/(J + 1/2). These
results bear on the topic in the following section associated with the semi-classical connection
to rotation matrices.

5. Connection to rotation matrices and semi-classical pictures

The reduction of a 3j in the classical limit to Wigner reduced rotation matrices, d
j

mm′(θ), has
also long been recognized (see appendix 2 of [1, 2, 26], and problem 5.5 of [5]). Again, as in
the previous section’s reduction to Legendre polynomials, the similar reduction of parameters
here by one is because M and J appear only in the form of the ratio, the tilt cos θ . A host
of interesting relationships of these rotation d matrices in various limiting cases to special
functions such as Legendre, Bessel, Hermite and Laguerre is also known; see, especially,
equations (11.48), (13.11) and (13.36) of [25].

Heisenberg’s correspondence principle has also been used to examine such classical limits
and the reduction of 3j (and, again, also 6j ’s) to a reduced rotation matrix element [43, 44].
Actually, it is rather the Clebsch–Gordan coupling coefficient that shows this correspondence
but it is simply related to the 3j . With two values of j fixed, the behavior either as a function of
the other j or an m value, shows oscillations in the ‘classically allowed’ region and monotonic
decay into the ‘classically forbidden’ zone, these zones defined by the classical vector addition
rule [17, 18, 21, 23, 45, 46]. These plots resemble those of the special functions noted

7
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j1

j2
j2

j3

z

θ1

θ2

θ1 − θ2

Figure 1. Vector coupling diagram (classical picture).

above. Accurate results for 3j in classically allowed and forbidden regions have been given
in [17].

The classical diagram [2, 21, 45] for adding two angular momentum vectors according
to the parallelogram rule, as shown in figure 1, gives for tilts x1 and x2 and corresponding tilt
angles θ1 and θ2, the tilt of the sum through simple geometry as

x3 = m3

j3
= j1x1 + j2x2√

j 2
1 + j 2

2 + 2j1j2
(
x1x2 +

√
1 − x2

1

√
1 − x2

2

) . (21)

In the classical limit, the coupling coefficient for this value will be dominant. As an example,
for (j1 = j2 = 4,m1 = 3,m2 = 0), this coefficient for the allowed values j3 = 3, 4, . . . , 8

is largest for j3 = 7 as per the prediction of (21). As another example,
(2 4 j3

1 2 −3

)
, with tilts

x1 = x2 = 1/2, has its peak value for j3 = 6. Indeed, this 3j has a weight c = 1 zero for
j3 = 5, both these results in conformity with our initial discussion in the introduction that tilt
is conserved.

The semi-classical picture of 3j or Clebsch–Gordan coefficients also sheds light on
their nontrivial zeroes and near-zeroes. Another example, with larger values for its entries
than that in the previous paragraph, illustrates the point. The 3j -symbol for (j1 = 6, j2 =
9/2,m1 = 2,m2 = 3/2,m3 = −7/2) as a function of j3 takes the values −0.128, 0.121,
0.031, −0.107,−0.008, 0.104, 0, −0.127 for j3 = 7/2, 9/2, . . . , 21/2. Note the oscillation
as a function of j3. This being another example of equal tilt, x1 = x2 = 1/3, there is a weight
c = 1 zero at j3 = j1 + j2 − c = 19/2. Descending from that value in steps of two, the
values are again small although not exactly zero. As a function of a continuous parameter,
oscillations in the classically allowed region have zeroes, only one of them coinciding with
the physically allowed value of integer or half-odd integer. Other physically allowed values
that lie near a zero of the classical oscillations exhibit the near-zero values in the above set of
numbers. Note also that the dominant value occurs at the highest j3 which has the same tilt of
1/3 and is also the value given by (21), representing the classical turning point in this example.
Interestingly, the lowest allowed j3 = 7/2 value for this set is the other turning point, given
by the same expression in (21) but with a plus sign in front of the last square root, which
makes its coefficient relatively large instead of a near-zero. This illustrates another familiar
feature, as best illustrated by harmonic oscillator wavefunctions of high quantum numbers, of
a peaking near the classical turning points. Many other nice examples of such oscillations,
zeroes and peaking near the edges in Clebsch–Gordan coefficients are shown in [21, 46].
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6. Connection to expectation values of rk for the hydrogen atom

Expressions similar to those discussed in previous sections have also long been known for
matrix elements of rk for the quantum-mechanical hydrogen atom. Several authors have
noted that the expectation value of such an operator can be written as a sum over a product
of three binomial factors, just as in (7) (see [47], section 3 of [48, 49–51]). Others have
written the expectation value as a 3F2 with argument unity [50], again analogous to (15) for
3j . Semi-classical renderings [52, 53], this time through the Coulomb–Kepler orbit, to cast
the expectation value as a Legendre polynomial are also known [54, 55]. All these features for
just the radial or dynamical aspects of the hydrogen atom, not its angular momentum aspects,
may at first sight seem surprising, given no obvious rotational symmetry considerations for
the radial equation. However, they are understood through the recognition that the radial
problem has the symmetry of the non-compact group O(2, 1) [56, 57]. This group’s closed
triplet of operators under commutation is very similar, apart from sign changes in the structure
factors, to those of the angular momentum’s O(3) triplet, which explains the appearance of
such Clebsch–Gordan coefficients in radial matrix elements.

Among illustrations of this correspondence between expectation values of powers of the
radial coordinate and results in previous sections are the very familiar ones in textbooks for a
hydrogenic state |nlm〉 (we use atomic units),

〈r〉 = 1

2
(3n2 − l(l + 1)), 〈r2〉 = n2

2
(5n2 − 3l(l + 1) + 1). (22)

These are, of course, reminiscent of the Legendre polynomials P2 and P3 as in (18) and
in the discussion following, down to the quantum ‘correction’ 1 to the semi-classical in P3

as discussed there. More extensive powers are given in [50] and a general semi-classical
expression for the expectation value is (see equation (12.11a) of [5])

〈rk〉 = n2k

(
l + 1/2

n

)k+1

Pk+1

(
n

l + 1/2

)
. (23)

Note that the roles of (l,m) in angular momentum are now played by (l, n) so that the tilt m/l

is now replaced by n/(l + 1/2). Again, as in alternatives for the tilt (see footnote 8), in some
contexts one can use n/l or even (n− 1/2)/(l + 1/2). The former is related to the eccentricity
ε of the orbit, given by (1 − ε2)−1/2 = n/l = a/b [52] while the latter takes the limiting value
of unity for ‘circular’ orbits, l = n − 1. a and b are the major and minor axes of the orbit and
these connections establish an analogy between tilt and eccentricity.

Nearly all discussions have been for the expectation values or diagonal matrix elements,

where 〈rk〉 are given by
(k + 1 l l

0 n −n

)
. We suggest that the off-diagonal elements for differing n

and l may be rendered as the corresponding 3j with more general entries. Indeed, the above
expectation value which involves a radial integral over an exponential, a power and a square
of a Laguerre polynomial, is given by [58, 59]

〈rk〉 = nk−1

2k+1

(n + l + k + 1)!

(n + l)! 3F2(−k − 1,−k − 1, l + 1 − n; 1,−n − l − k − 1; 1), (24)

which is related through (15) to 3j noted above. A more general radial integral with the two
Laguerre polynomials in the integrand differing in one index has been noted [59, 60]:∫ ∞

0
e−xxk+αL(α)

m (x)L(α)
n (x) dx = (−k)n−m

�(α + k + m + 1)

(n − m)!m!
× 3F2(−k,−k + n − m,−m; n − m + 1,−k − m − α; 1). (25)
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Such expressions and further generalizations could provide off-diagonal matrix elements of
powers of r. Another version but without explicit 3F2 is given in appendix F of [61] and
versions with Appell functions and others involving two variables are also known [62–64] but
the above bear the closest relationship to results in previous sections.

Acknowledgments

The work reported in this paper began 10 years ago in a conjecture by the late Dr S Brudno
and discussions with two of the authors (TAH and ARPR) as well as the late Dr U Fano who
pushed for geometrical understanding and pictures behind these observations. This paper is
dedicated to the memory of both of them and to our co-author Dr J Hinze who saw some of
these results but died before completion of this work. We thank Dr D Andrae for a careful
reading. He and an anonymous referee suggested several useful references.

References

[1] Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton, NJ: Princeton University Press)
[2] Wigner E P 1959 Group Theory and its Application to Atomic Spectra (New York: Academic) chapter 27
[3] Fano U and Racah G 1959 Irreducible Tensorial Sets (New York: Academic)
[4] Varshalovich D A, Moskalev A N and Khershonskii V K 1988 Quantum Theory of Angular Momentum

(Singapore: World Scientific)
[5] Fano U and Rau A R P 1996 Symmetries in Quantum Physics (Orlando: Academic)
[6] Rotenberg M, Bivins R, Metropolis N and Wooten J K Jr 1959 The 3-j and 6-j Symbols (Cambridge, MA: MIT

Press)
[7] Shimpuku T 1960 Prog. Theor. Phys. Suppl. 13 1
[8] Biedenharn L C and Louck J D 1981 The Racah–Wigner Algebra in Quantum Theory (Encyclopedia of

Mathematics and its Applications vol 9) ed G C Rota (Reading, MA: Addison-Wesley)
[9] Brudno S 1985 J. Math. Phys. 26 434

[10] Brudno S and Louck J D 1985 J. Math. Phys. 26 2092
[11] Lindner A 1985 J. Phys. A: Math. Gen. 18 3071
[12] Lindner A 1984 Drehimpulse in der Quantenmechanik (Stuttgart: Teubner)
[13] Srinivasa Rao K and Rajeswari V 1984 J. Phys. A: Math. Gen. 17 L243
[14] Srinivasa Rao K 1985 J. Math. Phys. 26 2260
[15] Srinivasa Rao K 1976 J. Phys. A: Math. Gen. 11 L69
[16] Louck J D and Stein P R 1987 J. Math. Phys. 28 2812
[17] Engel H and Kay K G 2008 J. Chem. Phys. 128 094104
[18] Ponzano G and Regge T 1968 Spectroscopic and Group Theoretic Methods in Physics ed F Bloch (Amsterdam:

North-Holland)
[19] Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics: Theory and Applications

(Reading, MA: Addison-Wesley)
[20] Srinivasa Rao K and Rajeswari V 1993 Quantum Theory of Angular Momentum: Selected Topics (Berlin:

Springer)
[21] Reinsch M W and Morehead J J 1999 J. Math. Phys. 40 4782
[22] Chen L C, Ismail M E H and Simeonov P 1999 J. Phys. A: Math. Gen. 32 537
[23] Borodin K S, Kroshilin A E and Tolmachev V V 1978 Theor. Math. Phys. 34 69
[24] Smorodinskii Ya A 1978 Sov. Phys.—JETP 48 403
[25] Talman J D 1968 Special Functions (New York: Benjamin)
[26] Flude J P M 1998 J. Math. Phys. 39 3906
[27] Condon E U and Shortley G H 1935 The Theory of Atomic Spectra (Cambridge: Cambridge University Press)
[28] Morita M and Yamada M 1952 Prog. Theor. Phys. 8 431
[29] Falkoff D L, Colladay G S and Sells R E 1952 Can. J. Phys. 30 253
[30] Bailey W N 1935 Generalized Hypergeometric Functions (Cambridge: Cambridge University Press)
[31] Slater L J 1966 Generalized Hypergeometric Functions (Cambridge: Cambridge University Press)
[32] Raynal J 1978 J. Math. Phys. 19 467
[33] Smorodinskii Ya A and Shelepin L A 1972 Sov. Phys.—Usp. 15 1

10

http://dx.doi.org/10.1143/PTPS.13.1
http://dx.doi.org/10.1063/1.526628
http://dx.doi.org/10.1063/1.526832
http://dx.doi.org/10.1088/0305-4470/18/15/029
http://dx.doi.org/10.1088/0305-4470/17/5/004
http://dx.doi.org/10.1063/1.526805
http://dx.doi.org/10.1063/1.527731
http://dx.doi.org/10.1063/1.2838981
http://dx.doi.org/10.1063/1.533000
http://dx.doi.org/10.1088/0305-4470/32/3/009
http://dx.doi.org/10.1007/BF01036473
http://dx.doi.org/10.1063/1.532474
http://dx.doi.org/10.1143/PTP.8.449
http://dx.doi.org/10.1063/1.523668
http://dx.doi.org/10.1070/PU1972v015n01ABEH004942


J. Phys. A: Math. Theor. 42 (2009) 175203 T A Heim et al

[34] Lai S T and Chiu Y N 1990 Comput. Phys. Commun. 61 350
[35] Tuzun R E, Burkhardt P and Secrest D 1998 Comput. Phys. Commun. 112 112
[36] Ansari S M R 1965 Nuovo Cimento 38 1883
[37] Ansari S M R 1967 Fortschr. Phys. 15 707

Ansari S M R 1967 Fortschr. Phys. 15 729
[38] Ansari S M R 1968 J. Math. Phys. 9 1295

Ansari S M R 1968 J. Math. Phys. 9 1299
[39] Radoux C 1988 Math. Intelligencer 10 44
[40] Luscombe J H and Luban M 1998 Phys. Rev. E 57 7274
[41] Rau A R P 1989 Phys. Rev. Lett. 63 244
[42] Rau A R P and Zhang L 1990 Phys. Rev. A 42 6342
[43] McFarlane S C 1992 J. Phys. B: At. Mol. Opt. Phys. 25 4045
[44] McFarlane S C 1993 J. Phys. B: At. Mol. Opt. Phys. 26 1871
[45] Brink D M and Satchler G R 1968 Angular Momentum (Oxford: Clarendon)
[46] Schulten K and Gordon R G 1971 J. Math. Phys. 16 1971
[47] Waller I 1926 Z. Phys. 38 635
[48] Bethe H A and Salpeter E E 1977 Quantum Mechanics of One- and Two-Electron Atoms (New York: Plenum)
[49] Blanchard P 1974 J. Phys. B: At. Mol. Phys. 7 993
[50] Bockasten K 1974 Phys. Rev. A 9 1087
[51] Heim T A 1994 J. Phys. B: At. Mol. Opt. Phys. 27 225
[52] Marxer H 1991 Phys. Rev. A 44 1543
[53] Liu Q H and Hu B 2001 J. Phys. A: Math. Gen. 34 5713
[54] Curtis J 1981 J. Phys. B: At. Mol. Phys. 14 1373
[55] Curtis J 1991 Phys. Rev. A 43 568
[56] Armstrong L Jr 1971 Phys. Rev. A 3 1546
[57] Judd B R 1970 Comments At. Mol. Phys. 2 132
[58] Pasternack S 1937 Proc. Natl. Acad. Sci. 23 91

Pasternack S 1937 Proc. Natl Acad. Sci. 23 250 (erratum)
[59] Andrae D 1997 J. Phys. B: At. Mol. Opt. Phys. 30 4435
[60] Davis L 1939 Phys. Rev. 56 186
[61] Landau L D and Lifshitz E M 1977 Quantum Mechanics: Non-relativistic Theory (Oxford: Pergamon)
[62] Badawi M, Bessis N, Bessis G and Hadinger G 1973 Phys. Rev. A 8 727
[63] Wong M K F and Yeh H-Y 1983 Phys. Rev. A 27 2300
[64] Belkic D 1981 J. Phys. B: At. Mol. Phys. 14 1907

11

http://dx.doi.org/10.1016/0010-4655(90)90049-7
http://dx.doi.org/10.1016/S0010-4655(98)00065-4
http://dx.doi.org/10.1007/BF02750104
http://dx.doi.org/10.1002/prop.19670151202
http://dx.doi.org/10.1002/prop.19670151203
http://dx.doi.org/10.1063/1.1664712
http://dx.doi.org/10.1063/1.1664713
http://dx.doi.org/10.1103/PhysRevE.57.7274
http://dx.doi.org/10.1103/PhysRevLett.63.244
http://dx.doi.org/10.1103/PhysRevA.42.6342
http://dx.doi.org/10.1088/0953-4075/25/20/004
http://dx.doi.org/10.1088/0953-4075/26/13/011
http://dx.doi.org/10.1063/1.522427
http://dx.doi.org/10.1007/BF01397605
http://dx.doi.org/10.1088/0022-3700/7/9/010
http://dx.doi.org/10.1103/PhysRevA.9.1087
http://dx.doi.org/10.1088/0953-4075/27/2/001
http://dx.doi.org/10.1103/PhysRevA.44.1543
http://dx.doi.org/10.1088/0305-4470/34/28/307
http://dx.doi.org/10.1088/0022-3700/14/9/004
http://dx.doi.org/10.1103/PhysRevA.43.568
http://dx.doi.org/10.1103/PhysRevA.3.1546
http://dx.doi.org/10.1073/pnas.23.2.91
http://dx.doi.org/10.1073/pnas.23.2.91
http://dx.doi.org/10.1088/0953-4075/30/20/008
http://dx.doi.org/10.1103/PhysRev.56.186
http://dx.doi.org/10.1103/PhysRevA.8.727
http://dx.doi.org/10.1103/PhysRevA.27.2300
http://dx.doi.org/10.1088/0022-3700/14/12/005

	1. Introduction
	2. Standardized classification by `weight' and accidental zeroes
	3. Connection to hypergeometric polynomials
	4. Connection to Legendre polynomials
	5. Connection to rotation matrices and semi-classical pictures
	6. Connection to expectation values
	Acknowledgments
	References

